看新闻·供热
供热系统节电降耗措施探讨
导读
供热企业是电耗大户,如果设备选型不当,系统设计不合理,造成电能的大量浪费。因此,供热系统的节电潜力巨大。要想节电还必须从供热系统的各组成部分如:热源、热网、热力站、热用户,从供热系统的各个环节如:设计、施工、以及运行管理、技术改造等全方位地分析问题,研究问题,找出各方面的主要矛盾,从而采取综合措施,达到最大程度的节约电能。下面就一下几方面浅谈一下供热系统节电节能技术措施。
一、调节水力平衡,避免水力失调
所谓水力失调,就是管网各处实际流量与所需不一致。任何一个供热系统都会存在不同程度的水力失调问题。从而造成部分热用户室温过高而浪费了热能,部分用户室温不达标,影响了供热质量。而此时,许多供热部门往往又错误的采用更换循环水泵,加大循环水流量等办法解决。虽然使水力工况在一定程度上有所改善,水力失调状况有所减轻,但由此却带来了电能的大量浪费,使供热企业的运行成本大大提高,同时使其它的节电措施无法实施。 只有从根本上消除热网的水利失调,才能确保用户的供热质量。以往消除水利失调的方法――人工调节关断阀、调节阀或平衡阀的方法,不仅给运行调节人员带来相当大的工作量,而且根本无法使管网的水力失调得到彻底改善。采用自动控制的方法又大大提高了热网建设资金的投入。目前最有效的办法,是最近几年来已开始普及的,在每个热用户的入口处安装恒流量调节阀或自力式流量控制阀的方法。只要按每个热用户需要的流量,一次性调节好,就可保证全网的水力平衡。它不但可保证流入每个热用户的循环水量与设计或实际需要一致,而且还会自动消除热网的剩余压头,保证热网有良好的水力工况。
二、提高供回水温差,降低循环水量
根据热量计算公式:Q=G×C×(Tg-Th)可知,当供热系统向热用户提供相同的热量Q时,供回水温差△T=Tg-Th与循环水量G成反比例关系。即系统的供回水温差大,则循环水量就小,水泵的电耗就会大大降低。目前,直供系统或间供系统的二级管网,也都存在着运行温差过小的问题。用户的室内采暖系统一般都按供回水温差25℃设计,但实际运行的温差都在20℃以下,有的甚至只有10℃左右,供回水温差小,循环水量就大,水泵的电耗就会增加,温差越小,电耗就越大。因此存在着大量电能浪费问题。提高供回水温差,降低循环水量是降低电耗的又一有利措施。
三、正确选择和安装循环水泵,提高水泵效率
在泵的选型与安装上,目前普遍存在着一些不合理的地方,许多时候不依照水力计算,而是死套所谓的“规定”,并层层加码或参照别人的设计、以前的设计,甚至在错误的理论指导下确定泵的型号。而工程设计人员和运行管理人员又都习以为常,浑然不觉。因此在水泵的问题上存在大量的电能浪费。主要问题有:
1、循环水泵扬程与实际需要相差太大
泵扬程过高既造成了电能浪费,有时还使泵在超流量工况下工作,使电机过载,不得不在关小水泵出口阀门的状况下工作,进一步造成了电能的浪费,可以使电耗超过实际需要的三倍以上。
2、多台泵并联运行,降低了水泵效率
(1)应正确认识水泵并联运行工况。
由泵的并联工况可知,单台泵运行效率要高于多台泵并联运行。但目前许多设计者都习惯选择二开一备、三开一备,甚至多开一备的方式,有时不但达不到所需要流量,而且造成了电能的巨大浪费。合理的设计是在每种工况下都是单台泵运行。因此可根据运行的工况,在同一个热源或热力站中同时选择几种不同型号的水泵,或变速泵。
(2)热源循环水泵的设计原则。
另外热源的循环水泵必须同时满足热网和热源的共同要求,不能根据锅炉的循环水量、一台炉配一台泵的多泵形式。这样几台泵并联运行后既不能满足锅炉的要求,也不能满足热网的要求。形成这种习惯的主要原因是:许多人错误地认为,水泵并联后的流量就是各泵铭牌流量之和。实际并联后的流量一定小于铭牌流量之和。它取决于并联特性曲线与管网特性曲线的交点。
3、撤掉循环水泵出口止回阀,减少了网络阻力
在给排水系统中,给水泵或排水泵出口设止回阀是必要的。因为这些系统都是开式系统,都是把水由低处往高处送,或者把水从低压处送往高压处。停泵时如果没有止回阀,则水会倒流。而供热系统是一个闭式系统,循环水泵的作用是克服网路的循环阻力,使水在网路中循环。当水泵停止工作时,水泵两侧的压强相等,不会作反向流动。因此安装止回阀只会增加网路的阻力,无谓的消耗电能,没有任何作用。热源和换热站的循环水泵出口都可不设止回阀,但直供混水系统的混水泵和回水加压泵,同补水系统与给水系统一样,泵的出口应设止回阀。对于多台水泵并联安装的情况。按离心水泵操作规程,不工作的水泵应关闭水泵进出口阀门,不需要由止回阀起隔离作用。此措施经多年实践证明,没出现任何问题,而且北欧的供热系统中,循环水泵出口就不设止回阀。
四、采取措施,确保锅炉在额定循环水量下工作
热源的节电节能除前面提到的循环水泵选型、安装的节电措施、以及提高热源供回水温差的节电措施外,围绕着锅炉的节电节能措施还有很多。如:提高锅炉的燃烧效率的各种措施,锅炉增加分层、分行、分段给煤的设备、防止锅炉水垢、烟垢的各种措施,锅炉鼓引风系统加装变频调速器等节电措施,这些都是大家比较熟悉的。这里主要介绍一个往往被许多人忽视,但又非常重要的问题。就是如何实现锅炉在额定循环水量下工作,既节约电能而又不影响系统总循环水量和供水温度的问题。每台热水锅炉在设计中都给定了额定循环水量和最高供回水温度。锅炉本体对循环水的总阻力损失就是在这个循环水量的情况下计算出来的。一般都不超过0.1MPa,即10米水柱。
而整个供热系统的总循环水量是根据系统的供回水温差和供热负荷确定的。它往往大于几台锅炉额定循环水量之和。许多工程技术人员都忽略了这一点。在设计和运行中不采取任何措施,而是使锅炉的实际运行循环水量与外网总循环水量相等。这样就造成了每台锅炉的循环水量大于额定循环水量,使炉内水的阻力损失大大超过锅炉说明书中的阻力损失。这个问题通常的解决办法是在循环水泵去锅炉的供回水干管之间加设一个旁通管。 旁通管管径的大小应根据流经旁通管水量的大小来确定,但旁通管的阻力小,可选择小一些的管径,以便同锅炉阻力匹配,亦可降低造价。
五、优化供热系统与热网设计,降低循环水泵的运行电耗
1、尽量不采用直供系统
供热系统最好不要采用直供形式,尽量采用间供形式或直供混水形式,才能减少循环水泵的运行电耗。
2、尽量增大管网管径
供热管网的管径大小与建设投资成正比,与运行电耗成反比。但同时也与城市供热发展规划密切相关,有时供热的发展会超出规划的设想。因此为了节电,为了给今后供热发展留出充分的空间,热网的管径在建设资金允许的条件下,应尽量大一些,经济比摩阻最好控制在30-50Pa/m。这样还可以同时提高管网的水力稳定性。
3、建设环状管网
环状管网不但可以自动优化水利工况,平衡供热效果,同时还可以减少管网事故对供热的影响。因此,在有条件的地方可以把支状管网连成环状管网,也相当于加大了某些管段的管径,既有利于节电,又可提高供热质量。另外应大胆推广在安定理论指导下的直埋技术,采用无补偿(或少补偿)、无固定墩的直埋技术。可大大降低投资和施工难度,提高管网的安全性。
4、采用多热源联合供热
多热源联合供热可以在供热初、末期充分发挥主热源的热效率,同时由于全网的循环水量小,调峰热源不启运,从而大大节约了电能。而在供热尖峰期启运调峰热源后,使主热源的供热半径和循环水量均缩小。节约了水泵的电耗。所以对于中、大型供热系统一定要采用多热源联合供热的形式。尤其是热电联产系统,为了使热电厂的热化系数接近0.5,提高供热系统的安全性,必须设置大型调峰热源、或同时设置几个调峰热源,实行多热源联合供热。多热源联合供热的设计和运行调节并不复杂,目前已有多家供热企业的成功经验和一套较完整的理论,可大胆推广应用。
5、去除分集水器
目前在许多热源和热力站还都设有分水器和集水器。这是从蒸汽供热系统沿袭下来的不合理做法。它不但增加了管网和热力站的施工难度提高了造价,而且增加了运行电耗,尤其是现在对热网水力工况的调节已进入到了第四个阶段----用恒流量调节阀或自力式流量控制阀调节水力平衡的阶段,已不需要分层次调节各分支点的调节阀了,只是在用户终端一次性调节恒流量调节阀的流量,就可以使全网达到水力平衡。因此分集水器就更没有必要继续存在下去,应彻底取缔。
来源:热力知识分享